Answer:
0.00000833 Pa
[tex]8.2210708117\times 10^{-11}\ atm[/tex]
0.0000166 Pa
[tex]1.6382926227\times 10^{-10}\ atm[/tex]
Explanation:
I = Light intensity = 2500 W/m²
c = Speed of light = [tex]3\times 10^8\ m/s[/tex]
Pressure is given by
[tex]P=\dfrac{I}{c}\\\Rightarrow P=\dfrac{2500}{3\times 10^8}\\\Rightarrow P=0.00000833\ Pa[/tex]
The pressure is 0.00000833 Pa
In atm
[tex]\dfrac{0.00000833}{101325}=8.2210708117\times 10^{-11}\ atm[/tex]
The pressure is [tex]8.2210708117\times 10^{-11}\ atm[/tex]
For total reflection
[tex]P=\dfrac{2I}{c}\\\Rightarrow P=\dfrac{2\times 2500}{3\times 10^8}\\\Rightarrow P=0.0000167\ Pa[/tex]
The pressure is 0.0000166 Pa
In atm
[tex]\dfrac{0.0000166}{101325}=1.6382926227\times 10^{-10}\ atm[/tex]
The pressure is [tex]1.6382926227\times 10^{-10}\ atm[/tex]