Answer:
Equilibrium constant for [tex]PCl_5[/tex] is 0.5
Equilibrium constant for decomposition of [tex]NO_2[/tex] is [tex]1.79 \times 10^{-14}[/tex]
Explanation:
[tex]PCl_5[/tex] dissociates as follows:
[tex]PCl_5 \rightleftharpoons PCl_3+Cl_2[/tex]
initial 0.72 mol 0 0
at eq. 0.72 - 0.40 0.40 0.40
Expression for the equilibrium constant is as follows:
[tex]k=\frac{[PCl_3][Cl_2]}{[PCl_5]}[/tex]
Substitute the values in the above formula to calculate equilibrium constant as follows:
[tex]k=\frac{[0.40/1][0.40/1]}{0.32/1} \\=\frac{0.40 \times 0.40}{0.32} \\=0.5[/tex]
Therefore, equilibrium constant for [tex]PCl_5[/tex] is 0.5
Now calculate the equilibrium constant for decomposition of [tex]NO_2[/tex]
It is given that [tex]3.3 \times 10^{-3} \%[/tex] is decomposed.
[tex]NO_2[/tex] decomposes as follows:
[tex]2NO_2 \rightleftharpoons 2NO + O_2[/tex]
initial 1.0 M 0 0
at eq. concentration of [tex]NO_2[/tex] is:
[tex][NO_2]_{eq}=1-(0.000066) = 0.999934\ M[/tex]
[tex][NO]_{eq}=6.6 \times 10^{-5}\ M[/tex]
[tex][O_2]_{eq}=3.3\times 10^{-5} = 3.3\times 10^{-5}\ M[/tex]
Expression for equilibrium constant is as follows:
[tex]K=\frac{[NO]^2[O_2]}{[NO_2]^2}[/tex]
Substitute the values in the above expression
[tex]K=\frac{[6.6\times 10^{-5}]^2[3.3 \times 10^{-5}]}{[0.999934]^2} \\=1.79\times 10^{-14}[/tex]
Equilibrium constant for decomposition of [tex]NO_2[/tex] is [tex]1.79 \times 10^{-14}[/tex]