An automobile tire contains air at 320x103 Pa at 20 ºC. The stem valve is removed and the air is allowed to expand adiabatically against the constant external pressure of 100x103 Pa until P = Pexternal. For air, CV,m = 5/2 R. Calculate the final temperature of the gas in the tire. Assume ideal gas behavior.Calculate the final temperature.

Respuesta :

Answer:

Final temperature is 235.4 K

Explanation:

because q=0, ΔU= w

[tex]nC_{v,m} (T_{f} - T_{i}) = -P_{ext} (V_{f} - V_{i})\\[/tex]

substitute for V from ideal gas equation PV = nRT

[tex]nC_{v,m} (T_{f} - T_{i}) = -P_{ext} (\frac{nRT_{f} }{P_{f} } - \frac{nRT_{i}}{P_{i} } )\\\\[/tex]

cancel out factor n and rearrange the equation

[tex]C_{v,m}T_{f} - C_{v,m}T_{i} = -P_{ext}\frac{RT_{f} }{P_{f} } + P_{ext}\frac{RT_{i} }{P_{i} }\\\\C_{v,m}T_{f} + P_{ext}\frac{RT_{f} }{P_{f} } = C_{v,m}T_{i} + P_{ext}\frac{RT_{i} }{P_{i} }\\\\T_{f} (C_{v,m} + \frac{P_{ext}R }{P_{f} } ) = T_{i} (C_{v,m} + \frac{P_{ext}R }{P_{i} } )\\\\[/tex]

make [tex]T_{f}[/tex] the subject of the formula

[tex]T_{f} = T_{i}(\frac{C_{v,m}+\frac{P_{extR} }{P_{i} } }{C_{v,m} + \frac{P_{extR} }{P_{f} } })[/tex]

[tex]T_{i}[/tex] =  20 degrees = 20 + 273K = 293K

R (a constant) = 8.314 Jmol⁻¹K⁻¹              

[tex]T_{f} = 293K(\frac{\frac{5}{2}*8.314Jmol^{-1}k^{-1} +\frac{10^{5}Pa * 8.314Jmol^{-1}k^{-1} }{3.20 * 10^{5} Pa } }{\frac{5}{2} * 8.314Jmol^{-1}k^{-1} + \frac{10^{5}Pa * 8.314 Jmol^{-1}k^{-1} }{1*10^{5} Pa } })[/tex]

solve for [tex]T_{f}[/tex] = 235.4 K

The final temperature is 235.4 K