Respuesta :

Answer:

[tex]y=-\frac{3}{5}x+\frac{7}{5}[/tex]

Step-by-step explanation:

The correct question is

Write an equation for the line passing through (-6,5) and (4,-1)

step 1

Find the slope

we know that

The formula to calculate the slope between two points is equal to

[tex]m=\frac{y2-y1}{x2-x1}[/tex]

we have

(-6,5) and (4,-1)

substitute

[tex]m=\frac{-1-5}{4+6}[/tex]

[tex]m=\frac{-6}{10}[/tex]

[tex]m=-\frac{3}{5}[/tex]

step 2

Find the equation of the line in point slope form

[tex]y-y1=m(x-x1)[/tex]

we have

[tex]m=-\frac{3}{5}[/tex]

[tex]point\ (-6,5)[/tex]

substitute

[tex]y-5=-\frac{3}{5}(x+6)[/tex]

step 3

Convert to slope intercept form

[tex]y=mx+b[/tex]

Isolate the variable y

[tex]y-5=-\frac{3}{5}x-\frac{18}{5}[/tex]

[tex]y=-\frac{3}{5}x-\frac{18}{5}+5[/tex]

[tex]y=-\frac{3}{5}x+\frac{7}{5}[/tex]