Respuesta :

frika

Answer:

0

Step-by-step explanation:

The period of the function [tex]y=\tan x[/tex] is equal to [tex]\pi.[/tex]

To find the exact value of [tex]\tan (6\pi)[/tex], first note that we can skip 6 periods of this function, so

[tex]\tan (6\pi)=\tan 0[/tex]

Use definition of [tex]\tan:[/tex]

[tex]\tan 0=\dfrac{\sin 0}{\cos 0}[/tex]

Since

[tex]\sin 0 = 0\\ \\\cos 0=1,[/tex]

we have that

[tex]\tan (6\pi)=\tan 0=\dfrac{\sin 0}{\cos 0}=\dfrac{0}{1}=0[/tex]