Answer:
Step-by-step explanation:
The formula for determining the distance between two points on a straight line is expressed as
Distance = √(x2 - x1)² + (y2 - y1)²
Where
x2 represents final value of x on the horizontal axis
x1 represents initial value of x on the horizontal axis.
y2 represents final value of y on the vertical axis.
y1 represents initial value of y on the vertical axis.
From the points given,
x2 = 0
x1 = 9
y2 = - 33
y1 = 7
Therefore,
Distance = √(0 - 9)² + (- 33 - 7)²
Distance = √(- 9² + (- 40)² = √(81 + 1600) = √1681
Distance = 41
The formula determining the midpoint of a line is expressed as
[(x1 + x2)/2 , (y1 + y2)/2]
[(9 + 0) , (7 - 33)]
= (9, - 26]