Respuesta :

The sum of the given series = 176

Step-by-step explanation:

The given series:

[tex]6 + 8 + 10 + 12 + 14 + 16 + 18 + 20 + 22 + 24 + 26[/tex]

Here, first term(a) = 6 and common difference(d) = 8 - 6 = 2

The given series are in AP.

Let the number of term = n

We know that,

The nth term of an AP

∴ [tex]a_{n}=a+(n-1)d[/tex]

⇒ 6 + (n - 1) 2 = 26

⇒ (n - 1) 2 = 26 - 6 = 20

⇒ n - 1 = [tex]\dfrac{20}{2} =10[/tex]

⇒ n = 10 + 1 = 11

∴  The sum of the given series = [tex]\dfrac{n}{2}(a+a_{n})[/tex]

= [tex]\dfrac{11}{2}(6+26)[/tex]

= [tex]\dfrac{11}{2}(32)[/tex]

= 11 × 16 = 176

Thus, the sum of the given series = 176

Answer:

the awnser is A I just got it right