Which polynomial represents a sum of cubes?


x^3+9

4x^3+1

8x^3+1

64x^3-27


Which of the following polynomials represents a difference of squares?


4x^2-8

9x^2+16

16x^2-2

49x^2-25


Respuesta :

Answer:

1) The polynomial [tex]8x^3+1[/tex] represents a sum of cubes

2) The polynomial [tex]49x^2-25[/tex] represents a difference of squares

Step-by-step explanation:

1) To find the polynomials represents a sum of cubes :

[tex]8x^3+1[/tex] represents a sum of cubes

For [tex]8x^3+1[/tex]

[tex]=2^3x^3+1^3[/tex]

[tex]=(2x)^3+1^3[/tex]

Therefore [tex]8x^3+1=(2x)^3+1^3[/tex]

Therefore [tex]8x^3+1[/tex] represents a sum of cubes

2)To find the polynomials represents a difference of squares :

[tex]49x^2-25[/tex] represents a difference of squares

For [tex]49x^2-25[/tex]

[tex]=7^2x^2-5^2[/tex]

[tex]=(7x)^2-5^2[/tex]

Therefore [tex]49x^2-25=(7x)^2-5^2[/tex]

Therefore [tex]49x^2-25[/tex] represents a difference of squares