Answer:
(a)
432 nm
(b)
287 nm
(c)
451 nm
Explanation:
[tex]Energy=\frac {h\times c}{\lambda}[/tex]
Where,
h is Plank's constant having value [tex]6.626\times 10^{-34}\ Js[/tex]
c is the speed of light having value [tex]3\times 10^8\ m/s[/tex]
[tex]\lambda[/tex] is the wavelength of the light
(a)
Given that:- Energy = [tex]4.60\times 10^{-19}\ J[/tex]
[tex]4.60\times 10^{-19}=\frac{6.626\times 10^{-34}\times 3\times 10^8}{\lambda}[/tex]
[tex]4.6\times \:10^{26}\times \lambda=1.99\times 10^{20}[/tex]
[tex]\lambda=4.32\times 10^{-9}\ m[/tex] = 432 nm
(b)
Given that:- Energy = [tex]6.94\times 10^{-19}\ J[/tex]
[tex]6.94\times 10^{-19}=\frac{6.626\times 10^{-34}\times 3\times 10^8}{\lambda}[/tex]
[tex]6.94\times \:10^{26}\times \lambda=1.99\times 10^{20}[/tex]
[tex]\lambda=2.87\times 10^{-9}\ m[/tex] = 287 nm
(c)
Given that:- Energy = [tex]4.41\times 10^{-19}\ J[/tex]
[tex]4.41\times 10^{-19}=\frac{6.626\times 10^{-34}\times 3\times 10^8}{\lambda}[/tex]
[tex]4.41\times \:10^{26}\times \lambda=1.99\times 10^{20}[/tex]
[tex]\lambda=4.51\times 10^{-9}\ m[/tex] = 451 nm