(a) Calculate the Bohr radius of an electron in the n = 3 orbit of a hydrogen atom.
(b) What is the energy (in J) of the atom in part (a)?
(c) What is the energy of an Li²⁺ ion when its electron is in the n = 3 orbit?
(d) Why are the answers to parts (b) and (c) different?

Respuesta :

Explanation:

[tex]E_n=-13.6\times \frac{Z^2}{n^2}eV[/tex]

Formula used for the radius of the [tex]n^{th}[/tex] orbit will be,

[tex]r_n=\frac{n^2\times 52.9}{Z}pm[/tex]   (in pm)

where,

[tex]E_n[/tex] = energy of [tex]n^{th}[/tex] orbit

[tex]r_n[/tex] = radius of [tex]n^{th}[/tex] orbit

n = number of orbit

Z = atomic number

a) The Bohr radius of an electron in the n = 3 orbit of a hydrogen atom.

Z = 1

[tex]r_3=\frac{3^2\times 52.9}{1} pm[/tex]

[tex]r_3=476.1 pm[/tex]

476.1 pm is the Bohr radius of an electron in the n = 3 orbit of a hydrogen atom.

b) The energy (in J) of the atom in part (a)

[tex]E_n=-13.6\times \frac{Z^2}{n^2}eV[/tex]

[tex]E_3=-13.6\times \frac{1^2}{3^2}eV=1.51 eV[/tex]

[tex]1 eV=1.60218\times 10^{-19} Joules[/tex]

[tex]1.51 eV=1.51\times 1.60218\times 10^{-19} Joules=2.4210\times 10^{-19} Joules[/tex]

[tex]2.4210\times 10^{-19} Joules[/tex] is the energy of n = 3 orbit of a hydrogen atom.

c)  The energy of an Li²⁺ ion when its electron is in the n = 3 orbit.

[tex]E_n=-13.6\times \frac{Z^2}{n^2}eV[/tex]

n = 3, Z = 3

[tex]E_3=-13.6\times \frac{3^2}{3^2}eV = -13.6 eV[/tex]

[tex]=-13.6eV = -13.6\times 1.60218\times 10^{-19} Joules=2.179\times 10^{-18} Joules[/tex]

[tex]2.179\times 10^{-18} Joules[/tex] is the energy of an Li²⁺ ion when its electron is in the n = 3 orbit.

d) The difference in answers is due to change value of Z in the formula which is am atomic number of the element..

[tex]E_n=-13.6\times \frac{Z^2}{n^2}eV[/tex]