Technetium (Tc; Z = 43) is a synthetic element used as a radioactive tracer in medical studies. A Tc atom emits a beta particle (electron) with a kinetic energy (Ek) of 4.71 x 10¹⁵ J. What is the de Broglie wavelength of this electron (Ek = ½mv²)?

Respuesta :

Question in incomplete, complete question is:

Technetium (Tc; Z = 43) is a synthetic element used as a radioactive tracer in medical studies. A Tc atom emits a beta particle (electron) with a kinetic energy (Ek) of [tex]4.71\times 10^{-15}J[/tex] . What is the de Broglie wavelength of this electron (Ek = ½mv²)?

Answer:

[tex] 6.762\times 10^{-12} m[/tex] is the de Broglie wavelength of this electron.

Explanation:

To calculate the wavelength of a particle, we use the equation given by De-Broglie's wavelength, which is:

[tex]\lambda=\frac{h}{\sqrt{2mE_k}}[/tex]

where,

= De-Broglie's wavelength = ?

h = Planck's constant = [tex]6.624\times 10^{-34}Js[/tex]

m = mass of beta particle = [tex] 9.1094\times 10^{-31} kg[/tex]

[tex]E_k[/tex] = kinetic energy of the particle = [tex]4.71\times 10^{-15}J[/tex]

Putting values in above equation, we get:

[tex]\lambda =\frac{6.624\times 10^{-34}Js}{\sqrt{2\times 9.1094\times 10^{-31} kg\times 4.71\times 10^{-15}J}}[/tex]

[tex]\lambda = 6.762\times 10^{-12} m[/tex]

[tex] 6.762\times 10^{-12} m[/tex] is the de Broglie wavelength of this electron.