Respuesta :
Answer:
(a). The shear stress on the pipe wall is 0.2062 lb/ft²
(b). The shear stress at the distance 0.3 is 0.12375 lb/ft²
(c). The shear stress at the distance 0.5 in away from the pipe wall is zero.
Explanation:
Given that,
Diameter = 1 in
Pressure = 0.55 psi
Length = 8 ft
We need to calculate the radius of the pipe
Using formula of radius
[tex]r=\dfrac{D}{2}[/tex]
Put the value into the formula
[tex]r=\dfrac{1}{2}[/tex]
[tex]r=0.5\ in[/tex]
(a). We need to calculate the shear stress on the pipe wall
Using formula of shear stress
[tex]\dfrac{\Delta p}{L}=\dfrac{2\tau}{r}[/tex]
[tex]\tau=\dfrac{\Delta p\times r}{2L}[/tex]
Put the value into the formula
[tex]\tau=\dfrac{0.55\times144\times0.5}{2\times8\times12}[/tex]
[tex]\tau=0.2062\ lb/ft^2[/tex]
(b). We need to calculate the shear stress at the distance 0.3 in
Using formula of shear stress
[tex]\tau=\dfrac{\Delta p\times r}{2L}[/tex]
Put the value into the formula
[tex]\tau=\dfrac{0.55\times144\times0.3}{2\times8\times12}[/tex]
[tex]\tau=0.12375\ lb/ft^2[/tex]
(c). We need to calculate the shear stress at the distance 0.5 in away from the pipe wall
r = 0.5-0.5 = 0
Using formula of shear stress
[tex]\tau=\dfrac{\Delta p\times r}{2L}[/tex]
Put the value into the formula
[tex]\tau=\dfrac{0.55\times144\times0}{2\times8\times12}[/tex]
[tex]\tau=0[/tex]
Hence, (a). The shear stress on the pipe wall is 0.2062 lb/ft²
(b). The shear stress at the distance 0.3 is 0.12375 lb/ft²
(c). The shear stress at the distance 0.5 in away from the pipe wall is zero.