Answer:
[tex]\frac{10}{15}-\frac{2}{5}=\frac{4}{15}[/tex]
Step-by-step explanation:
We know that
Let us consider two different fractions with different denominators
Lets subtract the two fractions
[tex]\frac{10}{15}-\frac{2}{5}\:\:\:\:[/tex]
[tex]\mathrm{Cancel\:}\frac{10}{15}:\quad \frac{2}{3}[/tex]
[tex]=\frac{2}{3}-\frac{2}{5}[/tex]
[tex]\mathrm{Least\:Common\:Multiplier\:of\:}3,\:5:\quad 15[/tex]
[tex]\mathrm{Adjust\:Fractions\:based\:on\:the\:LCM}[/tex]
[tex]\mathrm{For}\:\frac{2}{3}:\:\mathrm{multiply\:the\:denominator\:and\:numerator\:by\:}\:5[/tex]
[tex]\frac{2}{3}=\frac{2\cdot \:5}{3\cdot \:5}=\frac{10}{15}[/tex]
[tex]\mathrm{For}\:\frac{2}{5}:\:\mathrm{multiply\:the\:denominator\:and\:numerator\:by\:}\:3[/tex]
[tex]\frac{2}{5}=\frac{2\cdot \:3}{5\cdot \:3}=\frac{6}{15}[/tex]
so
[tex]=\frac{10}{15}-\frac{6}{15}[/tex]
[tex]\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}:\quad \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}[/tex]
[tex]=\frac{10-6}{15}[/tex]
[tex]\mathrm{Subtract\:the\:numbers:}\:10-6=4[/tex]
[tex]=\frac{4}{15}[/tex]
Therefore,
[tex]\frac{10}{15}-\frac{2}{5}=\frac{4}{15}[/tex]