Respuesta :

The slopes for the given data are.

4. Slope = [tex]\frac{3}{5}[/tex] = 0.6,

5. Slope = [tex]\frac{1.25}{1}[/tex] = 1.25, and

6. Slope = [tex]\frac{3}{4}[/tex] = 0.75.

Explanation:

  • The slope of a given line is determined by dividing the difference in y values of two particular coordinates by the difference in x values for the same two coordinates.                                                                                    Slope = [tex]\frac{differenceinyvalues}{differenceinxvalues}[/tex] (for the same two points).
  • Slope for points (2, -2) and (-3, -5) is calculated the following method;                     Slope = [tex]\frac{differenceinyvalues}{differenceinxvalues}[/tex], the difference in y values is 5 - 2 = 3 (since both values are in the same quadrant values are taken as positive) and the difference in x values is 2 - (-3) = 2 + 3 = 5.                                                         Slope = [tex]\frac{differenceinyvalues}{differenceinxvalues}[/tex] = [tex]\frac{3}{5}[/tex] = 0.6.
  • Slope for any of the given points (2, 5) and (4, 7.5) is calculated the following method;                                                                                           Slope = [tex]\frac{differenceinyvalues}{differenceinxvalues}[/tex], the difference in y values is 7.5 - 5 = 2.5 and the difference in x values is 4 - 2 = 2.                                                        Slope = [tex]\frac{differenceinyvalues}{differenceinxvalues}[/tex] = [tex]\frac{2.5}{2}[/tex] = [tex]\frac{2.5}{2}[/tex] = 1.25. The slope will be the same for all given coordinates.
  • Slope for points (-2, 4) and (2, 1) is calculated the following method;                     Slope = [tex]\frac{differenceinyvalues}{differenceinxvalues}[/tex], the difference in y values is 4 - 1 = 3 and the difference in x values is 2 - (-2) = 2 + 2 = 4.                                                          Slope = [tex]\frac{differenceinyvalues}{differenceinxvalues}[/tex] = [tex]\frac{3}{4}[/tex] = 0.75.