Answer: 2.66 × 10⁻¹³
Step-by-step explanation:
First, use the decay formula [tex]A=A_oe^{kt}[/tex] where
Given:
[tex]150=300e^{28.8k}\\\\0.5=e^{28.8k}\\\\ln(0.5)=ln(e^{28.8k})\\\\ln(0.5)=28.8k\\\\\\\dfrac{ln(0.5)}{28.8}=k\\\\\\\large\boxed{-0.0240676=k}\\[/tex]
Next, input the k-value and the new t-value to solve for A.
[tex]A=300e^{1440(-.0240676)}\\\\\large\boxed{A=2.66\times 10^{-13}}\\[/tex]