Respuesta :

Answer:

[tex]\alpha=3[/tex]

Step-by-step explanation:

Equation of a Circle

A circle of radius r and centered on the point (h,k) can be expressed by the equation

[tex](x-h)^2+(y-k)^2=r^2[/tex]

We are given the equation of a circle as

[tex]3x^2+3y^2-6\alpha x+12y-3\alpha=0[/tex]

Note we have corrected it by adding the square to the y. Simplify by 3

[tex]x^2+y^2-2\alpha x+4y-\alpha=0[/tex]

Complete squares and rearrange:

[tex]x^2-2\alpha x+y^2+4y=\alpha[/tex]

[tex]x^2-2\alpha x+\alpha^2+y^2+4y+4=\alpha+\alpha^2+4[/tex]

[tex](x-\alpha)^2+(y+2)^2=r^2[/tex]

We can see that, if r=4, then

[tex]\alpha+\alpha^2+4=16[/tex]

Or, equivalently

[tex]\alpha^2+\alpha-12=0[/tex]

There are two solutions for [tex]\alpha[/tex]:

[tex]\alpha=-4,\ \alpha=3[/tex]

Keeping the positive solution, as required:

[tex]\boxed{\alpha=3}[/tex]