Answer:
0
Step-by-step explanation:
Separate into two parts
[tex] \frac{4xy^{3} }{2xy^{2} } + \frac{8x^{2} {y}^{5} }{2x {y}^{2} } [/tex]
Simplify:
This is for the first fraction
[tex] \frac{4x {y}^{3} }{2x {y}^{2} } = (4 \div 2)(x \div x)( {y}^{3} \div {y}^{2} )[/tex]
[tex]2(1)( {y}^{3 - 2} )[/tex]
[tex]2{y}[/tex]
Now for the second fraction:
[tex] \frac{8 {x}^{2} {y}^{3} }{2x {y}^{2} } = ( 8 \div 2)( {x}^{2} \div x)( {y}^{5} \div {y}^{2} )[/tex]
[tex]4( {x}^{2 - 1} )( {y}^{5 - 2} )[/tex]
[tex]4x {y}^{3} [/tex]
Add both parts together
[tex]2y + 4x {y}^{3} [/tex]
To turn this into the said formula, that would become:
[tex]2 {x}^{0} {y}^{1} + 4 {x}^{1} {y}^{3} [/tex]
Where:
a=0
b=1
c=1
d=3
Any value with an exponent 0 except zero will be equal to 1