Respuesta :

Answer:

310 cars

Step-by-step explanation:

The given function that models the cost is :

[tex]c(x) = 0.4 {x}^{2} - 248x + 55514[/tex]

The function is of the form:

[tex]c(x) = a {x}^{2} + bx + c[/tex]

where a=0.4 , b=-248 and c=55,514

The minimum cost occurs at:

[tex]x = - \frac{b}{2a} [/tex]

We substitute to get:

[tex]x = - \frac{ - 248}{2 \times 0.4} [/tex]

[tex]x = 310[/tex]

Therefore 310 cars must be made to minimize cost.