Respuesta :
Perimeter = sum of length of sides = 2( sum of the unequal sides)
length of (2, 4) to (5, 4) = [tex] \sqrt{ (2-5)^{2} } = \sqrt{ (-3)^{2} } = \sqrt{9} =3 units[/tex]
length of (5, 1) to (0, -1) =[tex] \sqrt{ (5-0)^{2}+(1+1)^2 } = \sqrt{ (5)^{2}+2^2 } = \sqrt{25+4} =\sqrt{29}=5.39 units[/tex]
Perimeter = 2(3 + 5.39) = 2 x 8.39 = 16.8 units
length of (2, 4) to (5, 4) = [tex] \sqrt{ (2-5)^{2} } = \sqrt{ (-3)^{2} } = \sqrt{9} =3 units[/tex]
length of (5, 1) to (0, -1) =[tex] \sqrt{ (5-0)^{2}+(1+1)^2 } = \sqrt{ (5)^{2}+2^2 } = \sqrt{25+4} =\sqrt{29}=5.39 units[/tex]
Perimeter = 2(3 + 5.39) = 2 x 8.39 = 16.8 units
The Perimeter of the Kite, rounded to the nearest tenth = 16.8 units
What is the Perimeter of a Kite?
Perimeter = the sum of al the four sides of the kite.
Given:
- A(2, 4)
- B(5, 4)
- C(5, 1)
- D(0, –1)
Perimeter of kite = AB + BC + CD + DA
Applying the distance formula, [tex]d = \sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2}[/tex], we have the following:
AB = √(5−2)² + (4−4)²
AB = √9
AB = 3 units
BC = √(5−5)² + (4−1)²
BC = √9
BC = 3 units
CD = √(0−5)² + (−1−1)²
CD = √29
CD = 5.39 units
DA = √(0−2)² + (−1−4)²
DA = √29
DA = 5.39 units
Thus:
Perimeter of the Kite = 5.39 + 5.39 + 3 + 3
Perimeter of the Kite = 16.8 units
Learn more about perimeter of kite on:
https://brainly.com/question/14074571