Respuesta :

Perimeter = sum of length of sides = 2( sum of the unequal sides)
length of (2, 4) to (5, 4) = [tex] \sqrt{ (2-5)^{2} } = \sqrt{ (-3)^{2} } = \sqrt{9} =3 units[/tex]
length of (5, 1) to (0, -1) =[tex] \sqrt{ (5-0)^{2}+(1+1)^2 } = \sqrt{ (5)^{2}+2^2 } = \sqrt{25+4} =\sqrt{29}=5.39 units[/tex]
Perimeter = 2(3 + 5.39) = 2 x 8.39 = 16.8 units

The Perimeter of the Kite, rounded to the nearest tenth = 16.8 units

What is the Perimeter of a Kite?

Perimeter = the sum of al the four sides of the kite.

Given:

  • A(2, 4)
  • B(5, 4)
  • C(5, 1)
  • D(0, –1)

Perimeter of kite = AB + BC + CD + DA

Applying the distance formula, [tex]d = \sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2}[/tex], we have the following:

AB = √(5−2)² + (4−4)²

AB = √9

AB = 3 units

BC = √(5−5)² + (4−1)²

BC = √9

BC = 3 units

CD = √(0−5)² + (−1−1)²

CD = √29

CD = 5.39 units

DA = √(0−2)² + (−1−4)²

DA = √29

DA = 5.39 units

Thus:

Perimeter of the Kite = 5.39 + 5.39 + 3 + 3

Perimeter of the Kite = 16.8 units

Learn more about perimeter of kite on:

https://brainly.com/question/14074571