At a particular temperature, K = 4.1 ✕ 10−6 for the following reaction. 2 CO2(g) 2 CO(g) + O2(g) If 2.3 moles of CO2 is initially placed into a 4.9-L vessel, calculate the equilibrium concentrations of all species.

Respuesta :

Answer:

concentration of [tex][O_2][/tex] = 0.0124 = 12.4 ×10⁻³ M

concentration of [tex][CO][/tex] = 0.0248 = 2.48 ×10⁻² M

concentration of [tex][CO_2][/tex] = 0.4442 M

Explanation:

Equation for the reaction:

[tex]2CO_2_{(g)[/tex]                ⇄          [tex]2CO_{(g)[/tex]       +       [tex]O_2_{(g)[/tex]

Concentration of   [tex]CO_2_{(g)[/tex] = [tex]\frac{2.3}{4.9}[/tex]  = 0.469

For our ICE Table; we have:

                       [tex]2CO_2_{(g)[/tex]                ⇄          [tex]2CO_{(g)[/tex]       +       [tex]O_2_{(g)[/tex]

Initial                 0.469                              0                           0

Change              - 2x                                +2x                      +x

Equilibrium       (0.469-2x)                       2x                         x

K = [tex]\frac{[CO]^2[O]}{[CO_2]^2}[/tex]

K = [tex]\frac{[2x]^2[x]}{[0.469-2x]^2}[/tex]

[tex]4.1*10^{-6}=\frac{2x^3}{(0.469-2x)^2}[/tex]

Since the value pf K is very small, only little small of  reactant goes into product; so (0.469-2x)² = (0.469)²

[tex]4.1*10^{-6} = \frac{2x^3}{(0.938)}[/tex]

[tex]2x^3 =3.8458*10^{-6[/tex]

[tex]x^3 =\frac{3.8458*10^{-6}}{2}[/tex]

[tex]x^3=1.9229*10^{-6[/tex]

[tex]x=\sqrt[3]{1.9929*10^{-6}}[/tex]

x = 0.0124

∴ at equilibrium; concentration of  [tex][O_2][/tex] = 0.0124 = 12.4 ×10⁻³ M

concentration of [tex][CO][/tex] = 2x  = 2 ( 0.0124)

= 0.0248

= 2.48 ×10⁻² M

concentration of [tex][CO_2][/tex] = 0.469-2x

= 0.469-2(0.0124)

= 0.469 - 0.0248

= 0.4442 M