Respuesta :
Answer:
20 ways
Step-by-step explanation:
6C3 = 20
(A,B,C)
(A,B,D)
(A,B,E)
(A,B,F)
(A,C,D)
(A,C,E)
(A,C,F)
(A,D,E)
(A,D,F)
(A,E,F)
(B,C,D)
(B,C,E)
(B,C,F)
(B,D,E)
(B,D,F)
(B,E,F)
(C,D,E)
(C,D,F)
(C,E,F)
(D,E,F)
Three items can be selected from six items using combination formula C (n , k) = C (6 , 3) , in 20 ways
C (n, k) = n ! / (n - k) !
6 c 3 = 6 ! / 3 ! (6 - 3) !
= 6! / 3! 3!
= [ 6 x 5 x 4 x 3 x 2 x 1 ] / [ 3 x 2 x 1 x 3 x 2 x 1 ]
= 5 x 4
= 20 ways
To learn more, refer https://brainly.com/question/3374511?referrer=searchResults