Find the transpose of the matrix A.

Aequals=left bracket Start 2 By 3 Matrix 1st Row 1st Column negative 4 2nd Column negative 5 3rd Column 8 2nd Row 1st Column 8 2nd Column 4 3rd Column negative 8 EndMatrix right bracket

−4 −5 8
8 4 −8
Fill in the matrix with entries of the transpose.

left bracket Start 2 By 3 Matrix 1st Row 1st Column negative 4 2nd Column negative 5 3rd Column 8 2nd Row 1st Column 8 2nd Column 4 3rd Column negative 8 EndMatrix right bracket Superscript Upper T

−4 −5 8
8 4 −8
Tequals=left bracket Start 3 By 2 Matrix 1st Row 1st Column nothing 2nd Column nothing 2nd Row 1st Column nothing 2nd Column nothing 3rd Row 1st Column nothing 2nd Column nothing EndMatrix right bracket

Respuesta :

Answer:

[tex]\therefore A^{T}=\frac{2}{3} \left[\begin{array}{cc}-4&8\\-5&4\\8&-8\end{array}\right][/tex]

Step-by-step explanation:

Matrix transpose :The matrix transpose is switches the rows and column elements.

If a constant term multiplies with a matrix , then the constant term will multiply each element of the matrix.

Given

[tex]A=\frac{2}{3} \left[\begin{array}{ccc}-4&-5&8\\8&4&-8\end{array}\right][/tex]

   [tex]=\left[\begin{array}{ccc}\frac{2}{3} .(-4)&\frac{2}{3}(-5)&\frac{2}{3}8\\ \\ \frac{2}{3}.8&\frac{2}{3}.4&\frac{2}{3}.(-8)\end{array}\right][/tex]

  [tex]=\left[\begin{array}{ccc}\frac{-8}{3} &\frac{-10}{3}&\frac{16}{3}\\\ \\ \frac{16}{3}&\frac{8}{3}&\frac{-16}{3}\end{array}\right][/tex]

[tex]A^{T}=\left[\begin{array}{cc}\frac{-8}{3} &\frac{16}{3}\\\ \\ \frac{-10}{3}&\frac{8}{3}\\ \\ \frac{16}{3}&\frac{-16}{3}\end{array}\right][/tex]

    [tex]=\frac{2}{3} \left[\begin{array}{cc}-4&8\\-5&4\\8&-8\end{array}\right][/tex]

[tex]\therefore A^{T}=\frac{2}{3} \left[\begin{array}{cc}-4&8\\-5&4\\8&-8\end{array}\right][/tex]