Mr. James McWhinney, president of Daniel-James Financial Services, believes there is a relationship between the number of client contacts and the dollar amount of sales. To document this assertion, Mr. McWhinney gathered the following sample information. The X column indicates the number of client contacts last month and the Y column shows the value of sales ($ thousands) last month for each client sampled. Number of Contacts,x Sales ($ thousands),y14 24 23 30 12 14 48 90 20 28 50 85 16 30 55 120 46 80 50 110 Determine the regression equation.

Respuesta :

Answer:

[tex]\sum_{i=1}^n x_i = 334[/tex]

[tex]\sum_{i=1}^n y_i =611[/tex]

[tex]\sum_{i=1}^n x^2_i =13970[/tex]

[tex]\sum_{i=1}^n y^2_i =51581[/tex]

[tex]\sum_{i=1}^n x_i y_i =26584[/tex]

With these we can find the sums:

[tex]S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}=13970-\frac{334^2}{10}=2814.4[/tex]

[tex]S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n}=26584-\frac{334*611}{10}=6176.6[/tex]

And the slope would be:

[tex]m=\frac{6176.6}{2814.4}=2.195[/tex]

Nowe we can find the means for x and y like this:

[tex]\bar x= \frac{\sum x_i}{n}=\frac{334}{10}=33.4[/tex]

[tex]\bar y= \frac{\sum y_i}{n}=\frac{611}{10}=61.1[/tex]

And we can find the intercept using this:

[tex]b=\bar y -m \bar x=61.1-(2.195*33.4)=-12.213[/tex]

So the line would be given by:

[tex]y=2.195 x -12.213[/tex]

Step-by-step explanation:

The data given on this case is:

x: 14,12,20,16,46,23,48,50,55,50

y: 24,24,28,30,80,30,90,85,120,110

For this case we need to calculate the slope with the following formula:

[tex]m=\frac{S_{xy}}{S_{xx}}[/tex]

Where:

[tex]S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n}[/tex]

[tex]S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}[/tex]

So we can find the sums like this:

[tex]\sum_{i=1}^n x_i = 334[/tex]

[tex]\sum_{i=1}^n y_i =611[/tex]

[tex]\sum_{i=1}^n x^2_i =13970[/tex]

[tex]\sum_{i=1}^n y^2_i =51581[/tex]

[tex]\sum_{i=1}^n x_i y_i =26584[/tex]

With these we can find the sums:

[tex]S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}=13970-\frac{334^2}{10}=2814.4[/tex]

[tex]S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n}=26584-\frac{334*611}{10}=6176.6[/tex]

And the slope would be:

[tex]m=\frac{6176.6}{2814.4}=2.195[/tex]

Nowe we can find the means for x and y like this:

[tex]\bar x= \frac{\sum x_i}{n}=\frac{334}{10}=33.4[/tex]

[tex]\bar y= \frac{\sum y_i}{n}=\frac{611}{10}=61.1[/tex]

And we can find the intercept using this:

[tex]b=\bar y -m \bar x=61.1-(2.195*33.4)=-12.213[/tex]

So the line would be given by:

[tex]y=2.195 x -12.213[/tex]

Answer:

The regression equation of the line is [tex]y=2.39x+0.765[/tex]

Step-by-step explanation:

Given:

The X column indicates the number of client contacts last month and the Y column shows the value of sales ($ thousands) last month for each client sampled.

[tex]x: 14,12,20,16,46,23,48,50,55,50\\y: 24,24,28,30,80,30,90,85,120,110[/tex]

Solution:

The expression for finding the slope for the above cases is formulated below,

[tex]m=\dfrac{S_{xy}}{S{xx}}[/tex]

Where,

[tex]S_{xy}=\sum\limits_{{i=1}}^{{n}}{{x_iy_i-\dfrac{\sum\limits_{{i=1}}^{{n}}{{x_i\sum\limits_{{i=1}}^{{n}}{{y_i}} }} }{n}}}[/tex]

[tex]S_{xx}=\sum\limits_{{i=1}}^{{n}}{{x_i^2-\dfrac{\left[\sum\limits_{{i=1}}^{{n}}x_i\right]^2}{n}[/tex]

Therefore,

[tex]x^2: 196,144,400,256,2116,529,2304,2500,3025,2500\\y^2: 576,576,784,900,6400,900,8100,7225,14400,12100[/tex]

[tex]xy: 336,288,560,480,3680,690,4320,4250,6600,5500[/tex]

Now, as per the given data,

[tex]\sum\limits_{i=1}^{n} x =334[/tex]  

[tex]\sum\limits_{i=1}^{n} y =611[/tex]

[tex]\sum\limits_{i=1}^{n} x_i^2 =13970[/tex]

[tex]\sum\limits_{i=1}^{n} y_i^2 =51961[/tex]

[tex]\sum\limits_{i=1}^{n} x_iy_i =26704[/tex]

Therefore, plug-in these values in [tex]S_{xy}[/tex].

[tex]\begin{aligned}S_{xy}&=26704-\dfrac{334 \times 611}{10}\\&=26704-20407.4\\&=6296.6 \end{aligned}[/tex]

Similarly,

[tex]S_{xx}=13790-\dfrac{334^2}{10}\\=13790-11155.6\\=2634.4[/tex]

Hence,

[tex]\begin{aligned}m&=\dfrac{S_{xy}}{S{xx}}\\&=\dfrac{6296.6}{2634.4}\\&=2.39\end{aligned}[/tex]

Now, the points are extracted from the below formula,

x=334/10=33.4

y=611/10=61.1

Apply the slope-intercept form of the line,

[tex]y=mx+c\\y=2.39x+c[/tex]

The point (x,y) will satisfy the above equation,

thus,

[tex]61.1=2.39 \times 33.4+c\\0.765=c[/tex]

Plugin the value of c.

[tex]y=2.39x+0.765[/tex]

To know more, please refer to the link:

https://brainly.com/question/12820187?referrer=searchResults