Compute the kinetic energy of a proton (mass 1.67×10−27kg ) using both the nonrelativistic and relativistic expressions for speed of 9.00×107m/s. Enter your answers numerically separated by a comma.

Respuesta :

Answer:

The non-relativistic kinetic energy of a proton is [tex]6.76\times10^{-12}\ J[/tex]

The relativistic kinetic energy of a proton is [tex]7.25\times10^{-12}\ m/s[/tex]

Explanation:

Given that,

Mass of proton [tex]m=1.67\times10^{-27}\ kg[/tex]

Speed [tex]v= 9.00\times10^{7}\ m/s[/tex]

We need to calculate the kinetic energy for non relativistic

Using formula of kinetic energy

[tex]K.E=\dfrac{1}{2}mv^2[/tex]

Put the value into the formula

[tex]K.E=\dfrac{1}{2}\times1.67\times10^{-27}\times(9.00\times10^{7})^2[/tex]

[tex]K.E=6.76\times10^{-12}\ J[/tex]

We need to calculate the kinetic energy for relativistic

Using formula of kinetic energy

[tex]K.E=mc^2(\sqrt{(\dfrac{1}{1-\dfrac{v^2}{c^2}})}-1)[/tex]

[tex]K.E=1.67\times10^{-27}\times(3\times10^{8})^{2}\cdot\left(\sqrt{\frac{1}{1-\frac{\left(9.00\times10^{7}\right)^{2}}{(3\times10^{8})^{2}}}}-1\right)[/tex]

[tex]K.E=7.25\times10^{-12}\ m/s[/tex]

Hence, The non-relativistic kinetic energy of a proton is [tex]6.76\times10^{-12}\ J[/tex]

The relativistic kinetic energy of a proton is [tex]7.25\times10^{-12}\ m/s[/tex]