when two railroad tracks merge, the overlapping portions of the tracks are in the shape of a circular arc. The radius of each are r in feet and the angle theta are related by (x/2) = 2r(sin(theta/2)2. write a formula for x in terms of cos theta

Respuesta :

Answer:

[tex]x=2r(1-cos \theta)[/tex]

Step-by-step explanation:

Given equation,

[tex]\frac{x}{2}=2r(\sin(\frac{\theta}{2}))^2[/tex]

[tex]\frac{x}{2}=2r\sin^2(\frac{\theta}{2})[/tex]            ...... (1)

Since,

[tex]\cos 2A=1-2\sin^2 A[/tex]

[tex]\implies 2\sin^2A = 1 - \cos 2A[/tex]

Thus,

[tex]2 \sin^2(\frac{\theta}{2})=1-\cos \theta[/tex]  ...... (2)

From equation (1) and (2),

[tex]\frac{x}{2}=r(1-\cos \theta)[/tex]

[tex]x=2r(1-\cos \theta)[/tex]

Which is the required formula.