please please please please please please help me

Which of the following is the correct factorization of 8x³ + 64?


(2x - 4)(4x² + 8x + 16)


(2x + 2)(4x² - 16x + 36)


(2x - 2)(4x² + 16x + 36)


(2x + 4)(4x² - 8x + 16)

Respuesta :

Option D: [tex](2 x+4)\left(4 x^{2}-8 x+16\right)[/tex] is the factorization of [tex]8 x^{3}+64[/tex]

Explanation:

The given expression is [tex]8 x^{3}+64[/tex]

We need to determine the factorization of the expression [tex]8 x^{3}+64[/tex]

Rewriting the expression as [tex](2x)^3+(4)^3[/tex]

Thus, the expression is of the form [tex]a^{3}+b^{3}[/tex]

The formula to determine the factorization of [tex]a^{3}+b^{3}[/tex] is given by

[tex]a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)[/tex]

where [tex]a=2x[/tex] and [tex]b=4[/tex]

Substituting the values in the formula [tex]a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)[/tex] , we have,

[tex](2x)^3+(4)^3=(2x+4)((2x)^2-(2x)(4)+(4)^2)[/tex]

Simplifying the terms, we have,

[tex](2x)^3+(4)^3=(2x+4)(4x^2-8x+16)[/tex]

Hence, the correct factorization of [tex]8 x^{3}+64[/tex] is [tex](2 x+4)\left(4 x^{2}-8 x+16\right)[/tex]

Therefore, Option D is the correct answer.