somebody help me plzzzz plz

Which of the following is the solution to 7/(x+2) + 11/(x-5) = 7/(x+2)(x-5)?


10/9


9/10


-10/9


-9/10

Respuesta :

Option A: [tex]\frac{10}{9}[/tex] is the solution of x

Explanation:

The given expression is [tex]\frac{7}{(x+2)}+\frac{11}{(x-5)}=\frac{7}{(x+2)(x-5)}[/tex]

We need to determine the value of x.

The value of x can be determined by solving the expression for x.

Taking LCM , we get,

[tex]\frac{7(x-5)+11(x+2)}{(x+2)(x-5)}=\frac{7}{(x+2)(x-5)}[/tex]

Since, the denominator is common for both sides of the equation, let us cancel the denominator.

Thus, we have,

[tex]7(x-5)+11(x+2)=7[/tex]

Multiplying the terms within the bracket, we get,

[tex]7x-35+11x+22=7[/tex]

Adding the like terms, we get,

[tex]18x-13=7[/tex]

Adding both sides of the equation by 13, we have,

[tex]18x=20[/tex]

Dividing both sides of the equation by 18,

[tex]x=\frac{20}{18}[/tex]

Simplifying, we get,

[tex]x=\frac{10}{9}[/tex]

Thus, the solution is [tex]\frac{10}{9}[/tex]

Therefore, Option A is the correct answer.

Answer:

a

Step-by-step explanation: