Respuesta :
Answer:
The sample mean is 13.
The sample variance is 0.2286.
The sample standard deviation is 0.4781.
Step-by-step explanation:
The sample is:
S = {12.6, 12.9, 13.4, 12.3, 13.6, 13.5, 12.6, 13.1}
The sample is of size n = 8.
The formula to compute the sample mean, sample variance and sample standard deviation are:
[tex]\bar x=\frac{1}{n} \sum x[/tex]
[tex]s^{2}=\frac{1}{n}\sum (x-\bar x)^{2} \\s=\sqrt{\frac{1}{n}\sum (x-\bar x)^{2} }\\[/tex]
Compute the sample mean as follows:
[tex]\bar x=\frac{1}{n} \sum x\\=\frac{1}{8}(12.6+ 12.9+ 13.4+ 12.3+ 13.6+ 13.5+ 12.6+ 13.1)\\=\frac{104}{8}\\ =13[/tex]
The sample mean is 13.
Compute the sample variance as follows:
[tex]s^{2}=\frac{1}{n-1}\sum (x-\bar x)^{2} \\=\frac{1}{8-1}[(12.6-13)^{2}+(12.9-13)^{2}+(13.4-13)^{2}+...+(13.1-13)^{2}] \\=\frac{1}{7}\times1.6\\=0.2286[/tex]
The sample variance is 0.2286.
Compute the sample standard deviation as follows:
[tex]s=\sqrt{s^{2}}\\=\sqrt{0.2286}\\=0.4781[/tex]
The sample standard deviation is 0.4781.
Answer:
The sample mean is 13.
The sample variance is 0.2286.
The sample standard deviation is 0.4781.
Step-by-step explanation:
Good luck