When a garden hose with an output diameter of 20 mm is directed straight upward, the stream of water rises to a height of 0.13m . You then use your thumb to partially cover the output opening so that its diameter is reduced to 10 mm.

Part A

How high does the water rise now? Ignore drag and assume that the smaller opening you create with your thumb is circular.

Express your answer with the appropriate units

h=

Respuesta :

Answer: h = 0.52m

Explanation:

Using the equation of out flow;

A1 × V1 = A2 ×V2

Where A1 = area of the first nozzle

A2 = area of the second nozzle

V1= velocity of flow out from the first nozzle

V2 = velocity of flow out from 2nd nozzle

But AV= area of nozzle × velocity of water = volume of water per second(m³/s).

Now we can set A×V = Area of nozzle × height of rise.

Henceb A1× h1 = A2 × h2 ( note the time cancel on both sides)

D1 = 20mm= 0.02m; h1 = 0.13m

D2 = 10mm = 0.01m; h2= ?

h2 = π(D1/2)²× h1 /π(D2/2)²

h2 = (0.02/2)² × 0.13/(0.01/2)²

= (0.01)² ×0.13 /(0.005)²

= 1.3 × 10^-5/(5 × 10^-3)²

= 1.3 × 10^-5/25 × 10^-6

= (1.3/25) 10^-5 × 10^6

= 0.052× 10

= 0.52m