Respuesta :
Answer:
a) Figure attached
b) [tex]P(234<X<298)[/tex]
And the best way to solve this problem is using the normal standard distribution and the z score given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
If we apply this formula to our probability we got this:
[tex]P(234<X<298)=P(\frac{234-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{298-\mu}{\sigma})=P(\frac{234-266}{16}<Z<\frac{298-266}{16})=P(-2<z<2)[/tex]
And we can find this probability with this difference:
[tex]P(-2<z<2)=P(z<2)-P(z<-2)[/tex]
An we know using the graph in part a that this area correspond to 0.95 or 95%
c) [tex]P(250<X<314)=P(\frac{250-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{314-\mu}{\sigma})=P(\frac{250-266}{16}<Z<\frac{314-266}{16})=P(-1<z<3)[/tex]
And we can find this probability with this difference:
[tex]P(-1<z<3)=P(z<3)-P(z<-1)[/tex]
An we know using the graph in part a that this area correspond to 0.95 or 34+34+13.5+2.35%=83.85%
d) [tex] P(X<218)[/tex]
And using the z score we got:
[tex]P(X<218) = P(Z< \frac{218-266}{16}) = P(Z<-3) [/tex]
And that correspond to approximately 0.15%
Step-by-step explanation:
Part a
For this case we can see the figure attached.
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Part b
Let X the random variable that represent the length of human pregnancy of a population, and for this case we know that:
Where [tex]\mu=266[/tex] and [tex]\sigma=16[/tex]
We are interested on this probability
[tex]P(234<X<298)[/tex]
And the best way to solve this problem is using the normal standard distribution and the z score given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
If we apply this formula to our probability we got this:
[tex]P(234<X<298)=P(\frac{234-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{298-\mu}{\sigma})=P(\frac{234-266}{16}<Z<\frac{298-266}{16})=P(-2<z<2)[/tex]
And we can find this probability with this difference:
[tex]P(-2<z<2)=P(z<2)-P(z<-2)[/tex]
An we know using the graph in part a that this area correspond to 0.95 or 95%
Part c
[tex]P(250<X<314)=P(\frac{250-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{314-\mu}{\sigma})=P(\frac{250-266}{16}<Z<\frac{314-266}{16})=P(-1<z<3)[/tex]
And we can find this probability with this difference:
[tex]P(-1<z<3)=P(z<3)-P(z<-1)[/tex]
An we know using the graph in part a that this area correspond to 0.95 or 34+34+13.5+2.35%=83.85%
Part d
We want this probability:
[tex] P(X<218)[/tex]
And using the z score we got:
[tex]P(X<218) = P(Z< \frac{218-266}{16}) = P(Z<-3) [/tex]
And that correspond to approximately 0.15%