Respuesta :

Answer:

[tex](f - g)(x) = {x}^{3} - 6 {x}^{2} + 18x - 10[/tex]

Step-by-step explanation:

The given functions are:

[tex]f(x) = {x}^{3} - 2 {x}^{2} + 12x - 6[/tex]

and

[tex]g(x) = 4 {x}^{2} - 6x + 4[/tex]

We want to find

[tex](f - g)(x)[/tex]

Recall that:

[tex](f - g)(x) = f(x) - g(x)[/tex]

This implies that:

[tex](f - g)(x) = {x}^{3} - 2 {x}^{2} + 12x - 6 - (4 {x}^{2} - 6x + 4)[/tex]

[tex](f - g)(x) = {x}^{3} - 2 {x}^{2} + 12x - 6 - 4 {x}^{2} + 6x - 4[/tex]

We combine similar terms to get:

[tex](f - g)(x) = {x}^{3} - 6 {x}^{2} + 18x - 10[/tex]

msm555

Answer:

Solution given:

f(x)=x3−2x2+12x−6

g(x)=4x2−6x+4

now

(f-g)(x)=f(x)-f(g)=x3−2x2+12x−6-4x²+6x-4

=x³-6x²+18x-10