A sculptor has asked you to help electroplate gold onto a brass statue. You know that the charge carriers in the ionic solution are monovalent (charge e) gold ions, and you've calculated that you must deposit 0.60 g of gold to reach the necessary thickness.

How much current do you need, in mA, to plate the statue in 3.5 hr?

Respuesta :

Answer: The current needed, in mA, to plate the statue in 3.5 hr is 20 mA

Explanation:

Moles of electron = 1 mole

According to mole concept:

1 mole of an atom contains [tex]6.022\times 10^{23}[/tex] number of particles.

We know that:

Charge on 1 electron = [tex]1.6\times 10^{-19}C[/tex]

Charge on 1 mole of electrons = [tex]1.6\times 10^{-19}\times 6.022\times 10^{23}=9.6352\times 10^4C[/tex]

[tex]Au^++e^-\rightarrow Au[/tex]

197 g of gold is deposited by = 96500 C of electricity

Thus 0.60 g of gold is deposited by =[tex]\frac{96500}{197}\times 0.60=294 C[/tex] of electricity

To calculate the current required, we use the equation:

[tex]I=\frac{q}{t}[/tex]

where,

I = current passed = ?

q = total charge = [tex]294C[/tex]

t = time required = 3.5 hrs =[tex]3.5\times 3600=12600s[/tex]

Putting values in above equation, we get:

[tex]I=\frac{294C}{12600}\\\\I=0.02A=20mA[/tex]

Hence, the current needed, in mA, to plate the statue in 3.5 hr is 20 mA