An 18-gauge copper wire (diameter 1.02 mm) carries a current with a current density of 1.40×106 A/m2 . Copper has 8.5×1028 free electrons per cubic meter

Calculate the current in the wire

Calculate the drift velocity of electrons in the wire.

Respuesta :

Answer:

Part (a) current in the wire is 1.144 A

Part (b) the drift velocity of electrons in the wire is 1.028 x 10⁻⁴ m/s

Explanation:

Given;

diameter d  = 1.02 mm

current density J = 1.40×10⁶ A/m²

number of electron = 8.5×10²⁸ electrons

Part (a) Current in the wire

I = J×A

Where A is area of the wire;

[tex]A = \frac{\pi d^2}{4} \\\\A = \frac{\pi (1.02X10^{-3})^2}{4} = 8.1723 X10^{-7} m^2[/tex]

I = 1.40 x 10⁶ x 8.1723 x 10⁻⁷

I = 1.144 A

Part (b) the drift velocity of electrons in the wire

[tex]V = \frac{J}{nq} = \frac{1.4X10^6}{8.5X10^{28} X 1.602X10^{-19}} = 1.028 X10^{-4} m/s[/tex]

  • The current in the wire

We were given the

diameter = 1.02 mm

current density = 1.40×10⁶ A/m²

number of electron = 8.5×10²⁸ electrons

We can use the formula:

I = J×A

where I is current, J is density and A is area.

A = π d²

        4

  = π (1.02ₓ 10⁻³)² = 8.1723 x 10⁻⁷

              4

I = J×A

I = 1.40 x 10⁶ x 8.1723 x 10⁻⁷

I = 1.144 A

  • The drift velocity of electrons in the wire.

V = J/ nq

    =   1.4 ₓ 10⁶ / (8.5ₓ 10²⁸ₓ 1.602ₓ 10⁻¹⁹)

   = 1.028ₓ 10⁻⁴ m/s

Read more on https://brainly.com/question/14997979