Answer:
This question would be related to slopes so the answer is [tex]y=-\frac{7}{2}x+\frac{1}{4}[/tex]
Step-by-step explanation:
[tex]\mathrm{Slope-Intercept\:form\:of}\:\\x2+y2+12x+2y-1=0:\quad y=-\frac{7}{2}x+\frac{1}{4}[/tex]
[tex]\mathrm{Domain\:of\:}\:-\frac{7}{2}x+\frac{1}{4}\::\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:<x<\infty \\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}[/tex]
[tex]\mathrm{Range\:of\:}-\frac{7}{2}x+\frac{1}{4}:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:<f\left(x\right)<\infty \\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}[/tex]
[tex]\mathrm{Parity\:of}\:-\frac{7}{2}x+\frac{1}{4}:\quad \mathrm{Neither\:even\:nor\:odd}[/tex]
[tex]\mathrm{Axis\:interception\:points\:of}\:\\-\frac{7}{2}x+\frac{1}{4}:\quad \mathrm{X\:Intercepts}:\:\left(\frac{1}{14},\:0\right),\:\mathrm{Y\:Intercepts}:\:\left(0,\:\frac{1}{4}\right)[/tex]
[tex]\mathrm{Inverse\:of}\:-\frac{7}{2}x+\frac{1}{4}:\quad -\frac{4x-1}{14}[/tex]
[tex]\mathrm{Slope\:of\:}-\frac{7}{2}x+\frac{1}{4}:\quad m=-\frac{7}{2}[/tex]
Hope this helps you!
Have a good night!