Respuesta :

Answer:

[tex]\frac{sin(45^o)}{7}=\frac{sin(40^o)}{b}[/tex]

Step-by-step explanation:

The correct question is

In a triangle ABC, m∠A=45°, m∠B 40°, and a=7. which equation should you solve to find b?

we know that

Applying the law of sines

[tex]\frac{sin(A)}{a}=\frac{sin(B)}{b}[/tex]

substitute the given values

[tex]\frac{sin(45^o)}{7}=\frac{sin(40^o)}{b}[/tex]

solve for b

[tex]b=(7)sin(40^o)/sin(45^o)[/tex]

[tex]b=6.4\ units[/tex]

Answer:

Sin45/7 = sin40/b

Step-by-step explanation:

:D