A trombone can produce pitches ranging from 85 Hz to 660 Hz approximately. When the trombone is producing a 562 Hz tone, what is the wavelength of that tone in air at standard conditions?

Respuesta :

To solve this problem we will apply the concept of wavelength, which warns that this is equivalent to the relationship between the speed of the air (in this case in through the air) and the frequency of that wave. The air is in standard conditions so we have the relation,

Frequency [tex]= f = 562Hz[/tex]

Speed of sound in air [tex]= v = 331m/s[/tex]

The definition of wavelength is,

[tex]\lambda = \frac{v}{f}[/tex]

Here,

v = Velocity

f = Frequency

Replacing,

[tex]\lambda = \frac{331m/s}{562Hz}[/tex]

[tex]\lambda = 0.589m[/tex]

Therefore the wavelength of that tone in air at standard conditions is 0.589m

The wavelength of the tone in air 0.59 Hz

The trombone can produce pitches wavelength ranging from 85 Hz to 660 Hz

The trombone produces a tone of 562 Hz

The tone of air is at standard conditions, hence the velocity of the sound in air is 331 m/s

velocity=  frequency/wavelength

331= 562/wavelength

wavelength= 331/562

= 0.59 HZ

Hence the wavelength of the tone is 0.59 Hz

Please see the link below for more information

https://brainly.com/question/15230292?referrer=searchResults