Respuesta :
Answer:
a)
[tex] P(X=k) = {15 \choose k} * 0.75^{k}*0.25^{15-k} [/tex]
For any integer k between 0 and 15, and 0 for other values of k.
b)
[tex]P(X>10) = 0.2252+ 0.2252+ 0.1559+0.0668+0.0134 = 0.6865[/tex]
c) P(6 ≤ X ≤ 10) = 0.2737
d) μ = 15*0.75 = 11.25. σ² = 11.25*0.25 = 2.8125
Step-by-step explanation:
X is a binomial random variable with parameters n = 15, p = 0.75. Therefore
a)
[tex] P(X=k) = {15 \choose k} * 0.75^{k}*0.25^{15-k} [/tex]
For any integer k between 0 and 15, and 0 for other values of k.
b)
P(X>10) = P(X=11) + P(X=12)+ P(X=13)+P(X=14)+P(x=15)
[tex]P(X=11) = {15 \choose 11} * 0.75^{11} * 0.25^4 = 0.2252[/tex]
[tex]P(X=12) = {15 \choose 12} * 0.75^{12} * 0.25^3 = 0.2252[/tex]
[tex]P(X=13) = {15 \choose 13} * 0.75^{13} * 0.25^2 = 0.1559[/tex]
[tex]P(X=14) = {15 \choose 14} * 0.75^{14} * 0.25 = 0.0668[/tex]
[tex]P(X=15) = {15 \choose 15} * 0.75^{15} = 0.0134[/tex]
Thus,
[tex]P(X>10) = 0.2252+ 0.2252+ 0.1559+0.0668+0.0134 = 0.6865[/tex]
c) P(6 ≤ X ≤ 10) = P(X = 6) + P(X = 7) + P(X = 8) + P(X=9) + P(X=10)
[tex]P(X=6) = {15 \choose 6} * 0.75^{6} * 0.25^9 = 0.0034[/tex]
[tex]P(X=7) = {15 \choose 7} * 0.75^{7} * 0.25^8 = 0.0131[/tex]
[tex]P(X=8) = {15 \choose 8} * 0.75^{8} * 0.25^7 = 0.0393[/tex]
[tex]P(X=9) = {15 \choose 9} * 0.75^{9} * 0.25^6 = 0.0918[/tex]
[tex]P(X=10) = {15 \choose 10} * 0.75^{10} * 0.25^{5} = 0.1652[/tex]
Thereofre,
[tex]P(6 \leq X \leq 10) = 0.0034 + 0.0134 + 0.0393 + 0.0918 + 0.1652 = 0.2737[/tex]
d) μ = n*p = 15*0.75 = 11.25
σ² = np(1-p) = 11.25*0.25 = 2.8125