Water is to be boiled at sea level in a 30-cm-diameter stainless steel pan placed on top of a 3-kW electric burner. If 60 percent of the heat generated by the burner is transferred to the water during boiling, determine the rate of evaporation of water.

Respuesta :

Answer:

mevaporation=˙Qhfg=1. 8 kJ /s2269. 6 kJ /kg=0 . 793×10−3kg/ s=2. 855 kg /h

Explanation:

The properties of water at 1 atm and thus at the saturation temperature of 100C are hfg =2256.4 kJ/kg (Table A-4). The net rate of heat transfer to the water is ˙Q=0 . 60×3 kW=1 . 8 kWNoting that it takes 2256.4 kJ of energy to vaporize 1 kg of saturated liquid water, therate of evaporation of water is determined to be mevaporation=˙Qhfg=1. 8 kJ /s2269. 6 kJ /kg=0 . 793×10−3kg/ s=2. 855 kg /h

Ver imagen shadrachadamu

The rate of evaporation will be "2.871 Kg/hour".

Evaporation of water:

According to the question,

Rate of heat supplied:

= 60% of 3 kW

= 1.8 kW

= 1.8 KJ/s

Vaporization of water, [tex]\Delta H = 2257 \ KJ/Kg[/tex]

Time taken will be:

= [tex]\frac{2257}{1.8}[/tex]

= [tex]1254 \ s[/tex]

= [tex]\frac{1254}{3600} \ hour[/tex]

= [tex]0.3482 \ hour[/tex]

hence,

The rate of evaporation,

= [tex]\frac{Mass \ of \ water}{Time}[/tex]

= [tex]\frac{1}{0.3482}[/tex]

= [tex]2.871 \ Kg/hour[/tex]

Thus the above answer is right.

Find out more information about evaporation here:

https://brainly.com/question/4406110