The reaction of NO2 with ozone produces NO3 in a second-order reaction overall.

NO2(g) + O3(g) --> NO3 (g) + O2 (g)

If the rate constant for the reaction is 1.69 x 10^-4 M-1s-1 at 298 K. What is the rate of the reaction when [NO2] = 1.77 x 10^-8 M and [O3] = 1.59 x 10-7 M?

________ M/s


What is the rate of the appearance of NO3 under these conditions?

________M/s

Respuesta :

Answer :  The rate of reaction is,

[tex]Rate=4.77\times 10^{-19}M/s[/tex]

The appearance of [tex]NO_3[/tex] is, [tex]4.77\times 10^{-19}M/s[/tex]

Explanation :

The general rate of reaction is,

[tex]aA+bB\rightarrow cC+dD[/tex]

Rate of reaction : It is defined as the change in the concentration of any one of the reactants or products per unit time.

The expression for rate of reaction will be :

[tex]\text{Rate of disappearance of A}=-\frac{1}{a}\frac{d[A]}{dt}[/tex]

[tex]\text{Rate of disappearance of B}=-\frac{1}{b}\frac{d[B]}{dt}[/tex]

[tex]\text{Rate of formation of C}=+\frac{1}{c}\frac{d[C]}{dt}[/tex]

[tex]\text{Rate of formation of D}=+\frac{1}{d}\frac{d[D]}{dt}[/tex]

[tex]Rate=-\frac{1}{a}\frac{d[A]}{dt}=-\frac{1}{b}\frac{d[B]}{dt}=+\frac{1}{c}\frac{d[C]}{dt}=+\frac{1}{d}\frac{d[D]}{dt}[/tex]

From this we conclude that,

In the rate of reaction, A and B are the reactants and C and D are the products.

a, b, c and d are the stoichiometric coefficient of A, B, C and D respectively.

The negative sign along with the reactant terms is used simply to show that the concentration of the reactant is decreasing and positive sign along with the product terms is used simply to show that the concentration of the product is increasing.

The given rate of reaction is,

[tex]NO_2(g)+O_3(g)\rightarrow NO_3(g)+O_2(g)[/tex]

The rate law expression will be:

[tex]Rate=k[NO_2][O_3][/tex]

Given:

Rate constant = [tex]k=1.69\times 10^{-4}M^{-1}s^{-1}[/tex]

[tex][NO_2][/tex] = [tex]1.77\times 10^{-8}M[/tex]

[tex][O_3][/tex] = [tex]1.59\times 10^{-7}M[/tex]

[tex]Rate=k[NO_2][O_3][/tex]

[tex]Rate=(1.69\times 10^{-4})\times (1.77\times 10^{-8})\times (1.59\times 10^{-7})[/tex]

[tex]Rate=4.77\times 10^{-19}M/s[/tex]

The expression for rate of appearance of [tex]NO_3[/tex] :

[tex]\text{Rate of reaction}=\text{Rate of appearance of }NO_3=+\frac{d[NO_3]}{dt}[/tex]

As, [tex]\text{Rate of reaction}=4.77\times 10^{-19}M/s[/tex]

So, [tex]\text{Rate of appearance of }NO_3=+\frac{d[NO_3]}{dt}=4.77\times 10^{-19}M/s[/tex]

Thus, the appearance of [tex]NO_3[/tex] is, [tex]4.77\times 10^{-19}M/s[/tex]

The rate of reaction is [tex]4.77*10^{-19} M/s[/tex]

The rate of the appearance of [tex]NO_{3}[/tex] is, [tex]4.77*10^{-19} M/s[/tex]

The second order reaction is given as,

                     [tex]NO_{2}(g) + O_{3}(g) \Rightarrow NO_{3} (g) + O_{2} (g)[/tex]

Given that,

      Rate constant [tex]k=1.69*10^{-4}[/tex]

       [tex][NO_{2}] = 1.77 *10^{-8} M\\\\O_{3}= 1.59 * 10^{-7} M[/tex]

Rate of reaction is given as,

             [tex]Rate=k[NO_{2}][O_{3}]\\\\Rate=1.69*10^{-4}* 1.77*10^{-8}*1.59*10^{-7}\\\\Rate=4.77*10^{-19} M/s[/tex]

the rate of the appearance of [tex]NO_{3}[/tex] is,

              [tex]\frac{d[NO_{3}]}{dt}=4.77*10^{-19} M/s[/tex]

Learn more about the Rate of reaction here:

https://brainly.com/question/23637409