The midpoint of segment AB is (4, 2). The coordinates of point A are (2, 7). Find the coordinates of point B.

A) (5, 3)

B) (6, -3)

C) (2, -5)

D) (6, -5)

Respuesta :

Answer:

The option B) is correct

Therefore the coordinate of B[tex](x_2,y_2)[/tex] is (6,-3)

Step-by-step explanation:

Given that the midpoint of segment AB is (4, 2). The coordinates of point A is (2, 7).

To Find the coordinates of point B:

  • Let the coordinate of A be [tex](x_1,y_1)[/tex] is (2,7) respectively
  • Let the coordinate of B be [tex](x_2,y_2)[/tex]
  • And Let M(x,y) be the mid point of line segment AB is (4,2) respectively
  • The mid-point formula is

[tex]M(x,y)=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]

  • Now substitute the coordinates int he above formula we get
  • [tex](4,2)=(\frac{2+x_2}{2},\frac{7+y_2}{2})[/tex]
  • Now equating we get

[tex]4=\frac{2+x_2}{2}[/tex]                    [tex]2=\frac{7+y_2}{2}[/tex]

Multiply by 2 we get                             Multiply by 2 we get  

[tex]4(2)=2+x_2[/tex]                                           [tex]2(2)=7+y_2[/tex]

[tex]8=2+x_2[/tex]                                                [tex]4=7+y_2[/tex]

Subtracting 2 on both

the sides                                    Subtracting 7 on both the sides

[tex]8-2=2+x_2-2[/tex]                                [tex]4-7=7+y_2-7[/tex]

[tex]6=x_2[/tex]                                                       [tex]-3=y_2[/tex]

Rewritting the above equation      Rewritting the equation

[tex]x_2=6[/tex]                                                      [tex]y_2=-3[/tex]

Therefore the coordinate of B[tex](x_2,y_2)[/tex] is (6,-3)

Therefore the option B) is correct.