The Maclaurin series for sin−1(x) is given by sin−1(x) = x + [infinity] n = 1 1 · 3 · 5 (2n − 1) 2 · 4 · 6 (2n) x2n+1 2n + 1 . Use the first five terms of the Maclaurin series above to approximate sin−1 3 7 . (Round your answer to eight decimal places.)

Respuesta :

yemmy

Answer:

0.44290869

Step-by-step explanation:

The Maclaurin series for sin⁻¹(x) is given by

sin⁻¹(x) = x + [tex]x^{\alpha } _{n=1}[/tex] [tex]\frac{1.3.5...(2n - 1)}{2.4.6...(2n)} * \frac{x^{2n + 1} }{2n + 1}[/tex]

Use the first five terms of the Maclaurin series above to approximate sin⁻¹ [tex]\frac{3}{7}[/tex]. (Round your answer to eight decimal places.)

Answer

sin⁻¹(x) = x + [tex]x^{\alpha } _{n=1}[/tex] [tex]\frac{1.3.5...(2n - 1)}{2.4.6...(2n)} * \frac{x^{2n + 1} }{2n + 1}[/tex]

in the above equation [tex]x^{\alpha } _{n=1}[/tex]  summation from n=1 to ∞

we are estimating this for the first 5 terms as follows

sin⁻¹(x) = x +   [tex]\frac{1}{2} * \frac{x^{3} }{3}[/tex]  +  [tex]\frac{1*3}{2*4} * \frac{x^{5} }{5}[/tex]  +  [tex]\frac{1*3*5}{2*4*6} * \frac{x^{7} }{7}[/tex]  +  [tex]\frac{1*3*5*7}{2*4*6*8} * \frac{x^{9} }{9}[/tex]

sin⁻¹(x) = x +  [tex]\frac{x^{3} }{6}[/tex]  +  [tex]\frac{3x^{5} }{40}[/tex]  +[tex]\frac{15x^{7} }{336}[/tex]  +  [tex]\frac{105x^{9} }{3456}[/tex]  

now to get

sin⁻¹([tex]\frac{3}{7}[/tex]) substitute

hence,

sin⁻¹([tex]\frac{3}{7}[/tex]) = [tex]\frac{3}{7} + \frac{\frac{3}{7} ^{3} }{6} + \frac{3 * \frac{3}{7} ^{5} }{40} + \frac{15* \frac{3}{7} ^{7} }{336} + \frac{105* \frac{3}{7} ^{9} }{3456}[/tex]  

sin⁻¹([tex]\frac{3}{7}[/tex]) = 0.42857142 + 0.01311953 + 0.00108437 + 0.00011855 + 0.00001482

           =  0.44290869