Answer:
Using Sine rule we found the measure of ∠[tex]Z=54.2[/tex]°.
Step-by-step explanation:
Diagram of the given condition shown below.
Given that,
In Triangle Δ[tex]XYZ[/tex],
∠[tex]Y = 80[/tex]° , [tex]XY = 14, & \ XZ=17[/tex].
To find :- What is the measure of ∠[tex]Z[/tex].
So,
Using Sine rule :- sine rule relates the sine of each angle to length of opposite side.
[tex]\frac{Sin A}{a} = \frac{SinB}{b} = \frac{SinC}{c}[/tex]
Where, [tex]A,B,C[/tex] are angles of triangle Δ[tex]ABC.[/tex]
[tex]a,b,c[/tex] are side length of triangle.
Then,
[tex]\frac{Sin80}{17} = \frac{SinZ}{14}[/tex]
Using cross multiplication:-
⇒ [tex]SinZ \times 17 = Sin80 \times 14[/tex]
⇒ [tex]SinZ=\frac{Sin80\times14}{17}[/tex]
⇒ [tex]SinZ= 0.8110[/tex]
⇒ ∠[tex]Z=Sin^{-1}(0.8110)[/tex]
⇒ ∠[tex]Z=54.2[/tex]°
Hence,
Using Sine rule we found the measure of ∠[tex]Z=54.2[/tex]°.