A ray of laser light travels through air and enters an unknown material. The laser enters the material at an angle of 36 degrees to the normal. The refracted angle is 27.5 degrees. If the index of refraction of air is n = 1.00, what is the index of refraction of the unknown material?

Respuesta :

Answer:1.27

Explanation:

Given

incident angle [tex]i=36^{\circ}[/tex]

refracted angle [tex]r=27.5^{\circ}[/tex]

Suppose [tex]n_2[/tex] is the refractive index of material then using Snell's law we  can write

[tex]n_1\sin i=n_2\sin r[/tex]

where [tex]n_1[/tex]=refractive index of air

[tex]1\times \sin (36)=n_2\times \sin (27.5)[/tex]

[tex]n_2=\dfrac{0.5877}{0.4617}[/tex]

[tex]n_2=1.27[/tex]