Respuesta :

Answer: 1.4×10^-2

Step-by-step explanation:

Tanpi/4

Pi could be either 22/7 or 3.142

So any of these can be chosen

Pi = 3.142

Pi/4= 3.142/4

=0.7854

Tan 0.7854

= 0.0137

=1.4×10^-2

Answer:

Step-by-step explanation:

We'll use the half angle identity for tangent along with the unit circle to find the exact value of tan(π / 4).  There are 3 half angle identities for tangent, but I chose this one (just because!):

[tex]tan(\frac{\theta}{2})=\frac{1-cos\theta}{sin\theta}[/tex]

We just need to find the angle to replace theta.  It will be

[tex]tan(\frac{\frac{\pi}{2} }{2})[/tex] because

[tex]\frac{\pi}{2} *\frac{1}{2}=\frac{\pi}{4}[/tex]

Filling in:

[tex]tan(\frac{\frac{\pi}{2} }{2})=\frac{1-cos(\frac{\pi}{2}) }{sin(\frac{\pi}{2}) }[/tex]

Here's where we'll look to the unit circle to find that the

[tex]cos(\frac{\pi}{2})=0[/tex]  and  [tex]sin(\frac{\pi}{2})=1[/tex] so filling those values in gives us:

[tex]tan(\frac{\frac{\pi}{2} }{2})=\frac{1-0}{1}[/tex] so the exact value of

[tex]tan(\frac{\pi}{4})=1[/tex]