What is the molality of a solution of 1.25 moles of sugar dissolved in 0.750 kg of water? What is the boiling point and freezing point of the resulting solutions?

Respuesta :

Answer:

1.67 m is the molality of a solution .

The boiling point of a solution is 100.85°C.

The freezing point of a solution is -3.1°C.

Explanation:

[tex]Molality=\frac{\text{Moles of solute}}{\text{mass of solvent in kg}}[/tex]

Moles of sugar = 1.25 mol

Mass of water = 0.750 kg

Molality of the solution ;

[tex]m=\frac{1.25 mol}{0.750 kg}=1.67 m[/tex]

1.67 m is the molality of a solution .

Freezing point of the resulting solution

[tex]\Delta T_b=T_b-T'[/tex]

[tex]\Delta T_b=K_b\times m[/tex]

where,

[tex]\Delta T_b[/tex] =elevation in boiling point =

T' = Boiling point of pure solvent

[tex]T_b[/tex] = boiling point of solution

[tex]K_b[/tex] = boiling point constant

m = molality

we have :

[tex]K_b[/tex] of water = 0.512 °C/m ,

m = 1.67 m

[tex]\Delta T_b=0.512^oC\times 1.67 m[/tex]

[tex]\Delta T_b=0.85^oC[/tex]

Boiling point of pure water = T' =  100°C

Boiling  point of solution = [tex]T_b[/tex]

[tex]T_b=T'+\Delta T_b=100^oC+0.85^oC=100.85^oC[/tex]

The boiling point of a solution is 100.85°C.

Freezing point of the resulting solution

[tex]\Delta T_f=T-T_f[/tex]

[tex]\Delta T_f=K_f\times m[/tex]

where,

[tex]\Delta T_f[/tex] =depression in freezing point =

T = Freezing point of pure solvent

[tex]T_f[/tex] = Freezing point of solution

[tex]K_f[/tex] = freezing point constant

m = molality

we have :

[tex]K_f[/tex] of water = 1.86°C/m ,

m = 1.67 m

[tex]\Delta T_f=1.86^oC\times 1.67 m[/tex]

[tex]\Delta T_f=3.1^oC[/tex]

Freezing point of pure water = T =  0°C

Freezing point of solution = [tex]T_f[/tex]

[tex]T_f=T-\Delta T_f=0^oC-3.1^oC=-3.1^oC[/tex]

The freezing point of a solution is -3.1°C.