Use Lagrange multipliers to find the dimensions of a rectangular box with largest volume if the total surface area is given as 400 cm2. (Enter the dimensions (in centimeters) as a comma separated list.)

Respuesta :

Answer:

The dimension of the given box is [tex]\sqrt{\frac{200}{3}}\ cm[/tex] by [tex]\sqrt{\frac{200}{3}}\ cm[/tex] by[tex]\sqrt{\frac{200}{3}}\ cm[/tex].

Step-by-step explanation:

Assume the dimension of the box is x by y by z.

Total surface area of the box= 2xy+2yz+2xz=400

The volume of the box is f(x,y,z)= xyz

To maximum volume under constrain,

g(x,y,z)=2xy+2yz+2xz-400=0

we use Langrange Multiplier.

Assume that,

[tex]\triangledown f=\lambda \triangledown g[/tex]

[tex]\Rightarrow <f_x,f_y,f_z>=\lambda <g_x,g_y,g_z>[/tex]

[tex]\Rightarrow <xy,yz,xz>=\lambda<2(y+z),2(x+z),2(x+y)>[/tex]

[tex]\therefore xy=2 \lambda (y+z)[/tex] [tex]\Rightarrow xyz= 2\lambda(xy+xz)[/tex]

[tex]\therefore yz=2 \lambda (x+z)[/tex]  [tex]\Rightarrow xyz= 2\lambda (xy+yz)[/tex]

[tex]\therefore xy=2 \lambda (x+y)[/tex]  [tex]\Rightarrow xyz= 2\lambda (xz+yz)[/tex]

[tex]\therefore xyz= 2\lambda (xy+xz)=2 \lambda (xy+yz)=2 \lambda (xz+yz)[/tex]

If [tex]\lambda \neq 0[/tex],

[tex]\Rightarrow (xy+xz)= (xy+yz)=(xz+yz)[/tex]

This implies that, x=y=z

Then 2xy+2yz+2xz=400

⇒xy+yz+xz=200

⇒x²+x²+x²=200

⇒3x²=200

[tex]\Rightarrow x=\sqrt {\frac{200}{3}}[/tex]

Therefore [tex]x=y=z=\sqrt{\frac{200}{3}}[/tex] cm.