Answer:
[tex] \frac{9}{6}, \frac{16}{25}, \frac{3}{4}, \frac{5}{6} [/tex]
Step-by-step explanation:
Given fractions:
[tex] \frac{3}{4} , { \frac{5}{6} } , \frac{16}{25} , \frac{9}{15} [/tex]
We first find the equivalent fractions of the given fractions
[tex] \frac{3}{4}=\frac{3 \times 75}{4 \times 75}= \frac{225}{300} [/tex]
[tex] \frac{5}{6} = \frac{5 \times 50}{6 \times50 } = \frac{250}{300} [/tex]
[tex] \frac{16}{25} = \frac{16 \times 12}{25 \times 12} = \frac{192}{300} [/tex]
[tex] \frac{9}{15} = \frac{9 \times 12}{15 \times 12} = \frac{108}{300} [/tex]
Comparing the fractions starting from the smallest.
[tex] \frac{108}{300},\frac{192}{300},\frac{225}{300},\frac{250}{300}[/tex]
Hence the order of the given fractions from the smallest is:
[tex] \frac{9}{6}, \frac{16}{25}, \frac{3}{4}, \frac{5}{6} [/tex]