Answer:
[tex]f \cdot \: g = 3 {x}^{3} - 3 {x}^{2} - 24x + 36[/tex]
Domain: All real numbers
[tex]\frac{f}{g} = \frac{x + 3}{3} [/tex]
Domain: x≠2
Step-by-step explanation:
The given functions are
[tex]f(x) = {x}^{2} + x - 6[/tex]
and
[tex]g(x) = 3x - 6[/tex]
[tex]f \cdot \: g = f(x) \cdot \: g(x)[/tex]
This implies that:
[tex]f \cdot \: g = (3x - 6)( {x}^{2} + x - 6)[/tex]
We expand to get:
[tex]f \cdot \: g = 3x ( {x}^{2} + x - 6) - 6( {x}^{2} + x - 6)[/tex]
We expand to get:
[tex]f \cdot \: g = 3 {x}^{3} + 3 {x}^{2} - 18x - 6{x}^{2} - 6 x + 36[/tex]
We group like terms to get:
[tex]f \cdot \: g = 3 {x}^{3} - 3 {x}^{2} - 24x + 36[/tex]
This is a polynomial function, the domain is all real.
Also;
[tex] \frac{f}{g} = \frac{f(x)}{g(x)} [/tex]
[tex]\frac{f}{g} = \frac{ {x}^{2} + x - 6 }{3x - 6} [/tex]
Factor to get:
[tex]\frac{f}{g} = \frac{(x - 2)(x + 3)}{3(x - 2)} [/tex]
Cancel common factors:
[tex]\frac{f}{g} = \frac{x + 3}{3} [/tex]
The domain is all real numbers, except numbers that will make the denominator zero.
[tex]x \ne2[/tex]