Respuesta :

Answer:

[tex]f \cdot \: g = 3 {x}^{3} - 3 {x}^{2} - 24x + 36[/tex]

Domain: All real numbers

[tex]\frac{f}{g} = \frac{x + 3}{3} [/tex]

Domain: x≠2

Step-by-step explanation:

The given functions are

[tex]f(x) = {x}^{2} + x - 6[/tex]

and

[tex]g(x) = 3x - 6[/tex]

[tex]f \cdot \: g = f(x) \cdot \: g(x)[/tex]

This implies that:

[tex]f \cdot \: g = (3x - 6)( {x}^{2} + x - 6)[/tex]

We expand to get:

[tex]f \cdot \: g = 3x ( {x}^{2} + x - 6) - 6( {x}^{2} + x - 6)[/tex]

We expand to get:

[tex]f \cdot \: g = 3 {x}^{3} + 3 {x}^{2} - 18x - 6{x}^{2} - 6 x + 36[/tex]

We group like terms to get:

[tex]f \cdot \: g = 3 {x}^{3} - 3 {x}^{2} - 24x + 36[/tex]

This is a polynomial function, the domain is all real.

Also;

[tex] \frac{f}{g} = \frac{f(x)}{g(x)} [/tex]

[tex]\frac{f}{g} = \frac{ {x}^{2} + x - 6 }{3x - 6} [/tex]

Factor to get:

[tex]\frac{f}{g} = \frac{(x - 2)(x + 3)}{3(x - 2)} [/tex]

Cancel common factors:

[tex]\frac{f}{g} = \frac{x + 3}{3} [/tex]

The domain is all real numbers, except numbers that will make the denominator zero.

[tex]x \ne2[/tex]