Given:
The two equations are [tex]2x-5y=-7[/tex] and [tex]5x-3y=11[/tex]
We need to solve the equations using elimination method.
Elimination method:
Let us multiply the equation [tex]2x-5y=-7[/tex] by 5, we get;
[tex]10x-25y=-35[/tex] ---------(1)
Now, multiplying the equation [tex]5x-3y=11[/tex] by -2, we get;
[tex]-10x+6y=-22[/tex] --------(2)
Adding equations (1) and (2), we have;
[tex]\ \ \ 10x-25y=-35\\-10x+\ \ 6y=-22\\---------\\-19y=-57[/tex]
[tex]y=3[/tex]
Thus, the value of y is 3.
Substituting [tex]y=3[/tex] in the equation [tex]2x-5y=-7[/tex], we have;
[tex]2x-5(3)=-7[/tex]
[tex]2x-15=-7[/tex]
[tex]2x=8[/tex]
[tex]x=4[/tex]
Thus, the value of x is 4.
Hence, the solution of the system of equations is (4,3)
Therefore, Option A is the correct answer.