A string is connecting the corner of a square

canopy to a point on the ground 15 feet

from the base of the canopy, If the angle of

elevation from the point on the ground to

the comer of the canopy is 37º, find the

length of the string.

Respuesta :

Answer:

Length of the string is [tex]18.7820 ft[/tex].

Step-by-step explanation:

Diagram of the given scenario shown below,

Given that,

Angle of elevation from the point on the ground to the corner of the canopy is 37°.Distance of the corner of a square canopy to a point on the ground is 15 ft.

To find:- Find the length of the string.

So,

Length of string = AC

Length of Base = AB

angle of elevation = ∠CAB

Here, In Triangle ΔABC,

                                          [tex]cos[/tex](∠[tex]CAB[/tex]) [tex]= \frac{AB}{AC}[/tex]

                                          [tex]\cos\ (37) = \frac{15}{AC}[/tex]

                                                 [tex]AC= \frac{15}{cos(37)}[/tex]

                                                  [tex]AC=\frac{15}{0.798635}[/tex]

                                                  [tex]AC=18.7820 ft[/tex]

Hence, Length of the string is [tex]18.7820 ft[/tex].

           

Ver imagen sihanmintu